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ABSTRACT: Wireless multimedia sensor networking has made significant advances in both research and practice in

recent years. In addition to traditional data services, content-rich multimedia applications (such as videoconferencing,

VoD or VoIP) are increasingly being deployed in this type of networks. However, multimedia services need QoS support

to maintain user satisfaction. This paper investigates the potential of the compressed sensing (CS) paradigm for video

streaming in Wireless Multimedia Sensor Networks. The objective is to study performance limits and outline key design

principles that will be the basis for cross-layer protocol stacks for efficient transport of compressive video streams.

Hence, this paper investigates the effect of key video parameters (i.e., quantization, CS samples per frame, and channel

encoding rate) on the received video quality of CS images transmitted through a wireless channels. It is shown that,

unlike JPEG-encoded images, CS-encoded images exhibit an inherent resiliency to channel errors, caused by the

unstructured image representation; this leads to basically zero loss in image quality for random channel bit error rates as

high as 10 −4, and low degradation up to 10−3. Furthermore, it is shown how, unlike traditional wireless imaging

systems, forward error correction is not beneficial for wireless transmission of CS images. Instead, an adaptive parity

scheme that drops samples in error is proposed and shown to improve image quality. Finally, we present our initial

investigations on a low-complexity, adaptive video encoder that performs low-complexity motion estimation.

Index Terms: Compressed Sensing, Wireless Multimedia Sensor Networks, Compressive Video Streaming, Video

Streaming

I.INTRODUCTION

Compressed Sensing

Compressed sensing (also known as compressive
sensing, compressive sampling, or sparse sampling) is a
signal processing technique for efficiently acquiring
and reconstructing a signal, by finding solutions to
underdetermined linear systems. This takes advantage
of the signal's sparseness or compressibility in some
domain, allowing the entire signal to be determined
from relatively few measurements.

WSN Optimization

WSN optimization is a collection of techniques for
increasing data-transfer efficiencies across Wireless
Sensor Networks.

WSN optimization techniques

Deduplication – Eliminates the transfer of redundant
data across the WSN by sending references instead of
the actual data. By working at the byte level, benefits
are achieved across IP applications.
Compression – Relies on data patterns that can be
represented more efficiently. Essentially compression
techniques similar to ZIP, RAR, ARJ etc. are applied
on-the-fly to data passing through hardware (or virtual
machine) based WSN acceleration appliances
Latency optimization – Can include TCP refinements
such as window-size scaling, selective
Acknowledgements, Layer 3 congestion control
algorithms, and even co-location strategies in which the
application is placed in near proximity to the endpoint
to reduce latency.[6] In some implementations, the local
WSN optimizer will answer the requests of the client
locally instead of forwarding the request to the remote
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server in order to leverage write-behind and read-ahead
mechanisms to reduce WSN latency
Forward error correction – mitigates packet loss by
adding an additional loss-recovery packet for every “N”
packets that are sent, and this would reduce the need for
retransmissions in error-prone and congested WSN
links.
Connection limits – Prevents access gridlock in routers
and access points due to denial of service or peer to
peer. Best suited for wide open Internet access links,
can also be used on WSN links.
Simple rate limits – Prevents one user from getting
more than a fixed amount of data. Best suited as a stop
gap first effort for remediating a congested Internet
connection or WSN
Multimedia Streaming

Streaming media is multimedia that is constantly
received by and presented to an end-user while being
delivered by a provider. Its verb form, "to stream",
refers to the process of delivering media in this manner;
the term refers to the delivery method of the medium
rather than the medium itself.

Multimedia in-network processing: Processing of
multimedia content has mostly been approached as a
problem isolated from the network-design problem,
with a few exceptions such as joint source-channel
coding [44] and channel-adaptive streaming [51].
Hence, research that addressed the content delivery
aspects has typically not considered the characteristics
of the source content and has primarily studied cross-
layer interactions among lower layers of the protocol
stack. However, the processing and delivery of
multimedia content are not independent and their
interaction has a major impact on the levels of QoS that
can be delivered. WMSNs will allow performing
multimedia in-network processing algorithms on the
raw data. Hence, the QoS required at the application
level will be delivered by means of a combination of
both cross-layer optimization of the communication
process, and in-network processing of raw data streams
that describe the phenomenon of interest from multiple
views, with different media, and on multiple
resolutions. Hence, it is necessary to develop
application independent and self-organizing
architectures to flexible perform in-network processing
of multimedia contents.

II.RELATED WORKS

The new cross-layer optimized communication
protocol stacks based on the recently proposed
compressed sensing (CS) paradigm [5], [6] can offer a
convincing solution to the aforementioned problems.
However, as will become clearer in the following, this
may require a rethinking of traditional wireless
streaming functionalities across multiple layers.

Compressed sensing (aka “compressive sampling”) is a
new paradigm that allows the faithful recovery of
signals from far fewer measurements than traditional
methods based on Nyquist sampling. Hence, CS can
offer an alternative to traditional video encoders by
enabling imaging systems that sense and compress data
simultaneously and much faster, at very low
computational complexity for the encoder. Image
coding and decoding based on CS has been recently
explored [9]. So-called single-pixel cameras that can
operate efficiently across a much broader spectral range
(including infrared) than conventional silicon-based
cameras have also been proposed [1]. However,
transmission of CS images and video streaming in
wireless networks, and their statistical traffic
characterization, are substantially unexplored.

III. PROPOSED SYSTEM

In this paper, we study the potential of compressive
video streaming for Wireless Multimedia Sensor
Networks by conducting a cross-layer performance
evaluation of wireless streaming of CS video on
resource constrained devices. Our objective is to study
performance limits and outline key design principles
that will be the basis for cross-layer protocol stacks
designed for efficient transport of compressive video
streams over multi-hop wireless networks. Our
contributions can be outlined as follows:
 We study the effect of key video parameters (i.e.,

quantization, CS samples per frame, and channel
encoding rate) on the received video quality of CS
images transmitted through a wireless channels.

 We show how, unlike JPEG-encoded images, CS-
encoded images exhibit an inherent resiliency to
channel errors, caused by the unstructured image
representation; this leads to basically zero loss in
image quality for random channel bit error rates as
high as 10−4, and low degradation up to 10−3. We
discuss the profound impact of this finding on
wireless protocol design.

 Show how, unlike traditional wireless imaging
systems, forward error correction is not beneficial
in CS images at levels of bit error rate as high as
10−2. Instead, we propose an adaptive parity
scheme that drops samples in error, thus improving
the quality of the image reconstruction process.

System Architecture
Compressed Sensing Preliminaries
We consider an image signal represented through a
vector x < RN, where N is the vector length. We assume
that there exists an invertible N × N transform matrix Ψ
such that

x = Ψs
where s is a K-sparse vector, i.e., ||s||0 = K with K < N,
and where || ・ ||p represents p-norm. This means that
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theimage has a sparse representation in some
transformed domain, e.g.,wavelet. The signal is
measured by taking M < N measurements from linear
combinations of the element vectors through a linear
measurement operator Φ. Hence,

y = Φx = ΦΨs = ˜ Ψs.
We would like to recover x from

measurements in y. However, since M <N the system is
underdetermined. Hence, given a solution s0 to (2), any
vector s∗ such that s∗ = s0 + n, and n ∈ N(˜Ψ) (where
N(˜Ψ) represents the null space of ˜Ψ), is also a solution
to (3). However, it was proven in [6] that if the
measurement matrix Φ is sufficiently incoherent with
respect to the sparsifying matrix Ψ, and K is smaller
than a given  threshold (i.e., the sparse representation s
of the original signal x is “sparse enough”), then the
original s can be recovered by finding the sparsest
solution that satisfies (2), i.e., the sparsest solution that
“matches” the measurements in y. However, the
problem above is in general NP-hard. For matrices ˜Ψ
with sufficiently incoherent columns, whenever this
problem has a sufficiently sparse solution, the solution
is unique, and it is equal to the solution of the following
problem:

Where € is a small tolerance. Note that problem P1 is a
convex optimization problem. The reconstruction
complexity equals O(M2N3/2) if the problem is solved
using interior point methods [2].

Video Model

We represent each frame of the video by 8-bit
intensity values, i.e., a grayscale bitmap. To satisfy the
sparsity requirement of CS theory, the wavelet
transform is used as a sparsifying base. A conventional
imaging system or a single-pixel camera [1] can be the
base of the imaging scheme. In the latter case, the video
source only obtains random samples of the image (i.e.,
linear combinations of the pixel intensities). In our
model, the image can be sampled using a scrambled
block Hadamardensemble [3]

y = H32・ x,

Where y represents image samples (measurements),
H32 is the 32 × 32 Hadamard matrix and x the matrix
of the image pixels. The matrix x has been randomly
reordered and shaped into a 32 × N 32 matrix where N
is the number of pixels in the image. Then M samples
are randomly chosen from x and transmitted to the
receiver. The receiver then uses the M samples
transmitted along with the randomization patterns for

both randomizing the pixels into x and choosing the
samples out of x to be transmitted (both of which can be
decided upon before network setup) and recreates the
image solving P1 in (3) through a suitable algorithm,
e.g., GPSR2 [4], StOMP
Transmission of Infra Frame Encoded Video

We study the effect of key design parameters
on the received video quality of CS images transmitted
through a wireless channels; We first consider intra-
coded frames, i.e., we temporarily ignore the temporal
correlation among different frames. For a given data
rate at the transport layer F [bit/s], number of frames
per second, and end-to-end bit error rate (BER), there
are three main parameters that determine the perceptual
quality of the received video frame, i.e., the
quantization level of each sample Q, the number of
samples per frame M, and the channel encoding rate R.
1)Sample Quantization Rate

The sample quantization rateQ [bit/sample] is
the number of bits used to quantize eachsample. The
smaller Q, the lower the amount of information sent per
sample, and therefore the greater the number of samples
that can be transmitted for a target data rate F, at the
expense of greater quantization distortion in each
sample. We empirically evaluated the video quality of
CS images against the optimal ratio of number of
samples M vs quantization rate Q. To do so, we
evaluated the Structural Similarity Index (SSIM)3 [6]
between the original and the encoded image for a
standardized set of 25 images. We kept the total image
size constant at 37% of the original image size, i.e., the
image size that allows sending N samples (where N
corresponds to the number of image pixels) with 3-bit
quantization.

Figure 1 shows the average SSIM of the above
mentioned images against sample quantization rate,
with 95% confidence intervals. Clearly, the benefit of
more samples outweighs the distortion caused be less
accurate samples down to 5bit/sample. Intuitively, this
is because the recovery algorithm finds image with the
sparsest transform that minimizes the difference
between the samples received and the samples
generated from the reconstructed image. This means
that even though a small amount of samples (less than
one in 103) may be corrupted, the reconstructed image
is the same or very similar to the image which would
have been reconstructed without bit errors.
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Fig. 1. Structural Similarity (SSIM) Index [16] for
Images with a Constant Bit Rate of 37% of the Original
Image Size for Varying Quantization Levels.

2) Samples per Frame
The number of samples N needed to

reconstruct the image to a predefined quality level is
dependent on the sparsity of the transmitted image. The
greater the number of transmitted samples compared to
the sparsity of the image, the better the image quality of
the received frame. Depending on the desired video
quality at the receiver, the maximum number of
samples per frame can be selected to achieve that
quality.
3) Effect of Channel Errors

In CS, the transmitted samples constitute a
random, incoherent combination of the original image
pixels. This means that, unlike traditional wireless
imaging systems, in CS no individual sample is more
important for image reconstruction than any other
sample. Instead, the number of correctly received
samples is the only main factor in determining the
quality of the received image. Also, a small amount of
random channel errors does not affect the perceptual
quality of the received image at all, since, for moderate
bit error rates, the greater sparsity of the “correct”
image will offset the error caused by the incorrect bit.
This is demonstrated in Fig. 3. For any BER lower than
10−4, there is no noticeable drop in the image quality.
Up to BERs lower than 10−3, the SSIM is above 0.8,
which is an indicator of good image quality. CS image
representation is completely unstructured: this fact
makes CS video much more resilient than existing video
coding schemes to random channel errors. This has
important consequences and provides a strong
motivation for studying compressive wireless video
streaming in WMSNs.

To determine the channel encoding rate, we
first must determine the channel coding strategy
appropriate for compressed sensed imaging data
transmitted over a multi-hop wireless network. One of
the biggest advantages of compressed sensing is that the
transmitted samples constitute a random, incoherent

Combination of the original data. This means that no
single sample is any more important than any other
sample. Instead, only the number of correctly received
samples is the main factor in determining the quality of
the received image. Also, following the same logic as
for the quantization parameter selection, a small amount
of errors will not considerably affect the perceptual
quality of the received image, since, for a moderate
error rate, the greater sparsity of the correct image will
offset the error caused by the incorrect bit. This is
demonstrated in Figs 3 and 4. In Fig. 3, the same set of
images were reconstructed both with and without
corrupted samples after being transmitted through a
binary symmetric channel.Clearly, the image quality
considerably improves when the corrupted samples are
dropped.

To determine the channel encoding rate, we
first must determine the channel coding strategy
appropriate for compressed sensed imaging data
transmitted over a multi-hop wireless network. One of
the biggest advantages of compressed sensing is that the
transmitted samples constitute a random, incoherent
combination of the original data. This means that no
single sample is any more important than any other
sample. Instead, only the number of correctly received
samples is the main factor in determining the quality of
the received image. Also, following the same logic as
for the quantization parameter selection, a small amount
of errors will not considerably affect the perceptual
quality of the received image, since, for a moderate
error rate, the greater sparsity of the correct image will
offset the error caused by the incorrect bit. This is
demonstrated in Figs 2 and 3. In Fig. 3, the same set of
images were reconstructed both with and without
corrupted samples after being transmitted through a
binary symmetric channel. Clearly, the image quality
considerably improves when the corrupted samples are
dropped.

Fig. 2. Adaptive Parity vs RCPC Encoding for Variable
Bit Error rates
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Fig. 3. Lena Image with CS (above) and JPEG (below)
for BER (a) 10−5 (b) 10−4 (c) 10−3.
Adaptive Parity – Based Channel Coding

For a fixed number of bits per frame, the
perceptual quality of video streams can be further
improved by dropping errored samples that would
contribute to image reconstruction with incorrect
information. This can be obtained by using even parity
on a predefined number of samples, which are all
dropped at the receiver or at an intermediate node if the
parity check fails. This is particularly beneficial in
situations when the BER is still low, but too high to just
ignore errors. To determine the amount of samples to be
jointly encoded, the amount of correctly received
packets is modeled as

Where C is the estimated amount of correctly
received samples, b is the number of jointly encoded
samples, and Q is the quantization rate per sample. To
determine the optimal value of b for a given BER, (5)
can be differentiated, set equal to zero and solved for b.
If the end-to-end BER can be estimated by the
transmitting node, the optimal channel encoding rate
can then be chosen and used to encode the samples. The
received video quality using the parity scheme
described was compared to different levels of channel
protection using rate compatible punctured codes
(RCPC). Specifically, we use the 1 4 mother codes
discussed in [7]. Briefly, a 1 4 convolution code is
punctured to decrease the amount of redundancy
needed for the encoding process. These codes are
punctured progressively so that every higher rate code
is a subset of the lower rate codes. For example, any
bits that are punctured in the 4 15 code must also be
punctured in the 1 3 code, the 4 9 code, an so on down
to the highest rate code, in this case the 8 9 code.
Because of this setup, the receiver can decode the entire
family of codes with the same decoder. This allows the
transmitter to choose the most suitable code for the

given data. Clearly, as these codes are punctured to
reduce the redundancy, the effectiveness of the codes
decreases as far as the ability to correct bit errors.
Therefore we are trading bit error rate for transmission
rate.

Figure 2 shows the adaptive parity scheme
compared to RCPC codes. Clearly, for all reasonable bit
error rates, the adaptive parity scheme outperforms all
levels of RCPC codes. The parity scheme performs
better for all levels of BER, and it is also much simpler
to implement than more powerful forward error
correction (FEC) schemes. The parity scheme performs
better because, even though the FEC schemes show
stronger error correction capabilities, the additional
overhead does not make up for the video quality
increase compared to just dropping the samples which
have errors.
Inter Frame Encoded Compressed Video Streaming

In this section, we discuss a method for inter-
frame encoding. While this initial investigation is
general, it works particularly well for security videos.
Security videos are a special case of video in which we
can assume that the camera is not moving, but only the
objects within the field of view (FOV) of the camera
are moving. Because of this, there will often be a large
amount of redundancy from one frame of the video to
the next. One way to exploit this redundancy within the
framework of compressed sensing is by taking the
algebraic difference between two frames, encoding this
difference, recreating an image representing this
difference and combining it with the reference frame at
the receiver.

Figure 4 : Correlation and Sparsity for a Security Video

The amount of sparsity in the difference image
can be estimated based on the correlation, as shown in
Fig. 4. In this figure, we show the amount of correlation
between the two frames being considered, the amount
of sparsity as measured at the decoder and the quality
(SSIM) of the decoded frame as compared to the
original uncompressed frame. The”spikes” in the
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sparsity value indicate place where the intra-frame
compression was used. In the sections without those
spikes, clearly there is a negative linear relationship
between the two. Since the correlation can be measured
using only information at the video source, this allows
the source node to estimate the amount of sparsity at the
receiver.

If the image being encoded and the reference
image are very similar (i.e. have a very high correlation
coefficient), then this difference image will be sparser
than either of the original images, and can therefore be
transmitted at the same quality using fewer samples
than the original image.

VI.CONCLUSIONS
We have investigated the potential of the

compressed sensing (CS) paradigm for video streaming
in WMSNs. We have shown that, unlike JPEG-encoded
images, CS-encoded images exhibit an inherent
resiliency to channel errors, caused by the unstructured
image representation; this leads to basically zero loss in
image quality for random channel bit error rates as high
as 10−4, and low degradation up to 10−3. Furthermore,
we have shown that, unlike traditional wireless imaging
systems, forward error correction is not beneficial for
wireless transmission of CS images. Instead, we
proposed an adaptive parity scheme that drops samples
in error thus improving the quality of the reconstructed
image. Finally, we have proposed a low-complexity
adaptive video encoder that performs motion estimation
on the video sensors, thus considerably reducing the
amount of data to be transmitted. Our future work will
be focused on designing cross-layer optimized
communication protocols for CS-based WMSN based
on the principles outlined in this preliminary
investigation.
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